metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)copper(I)]- μ -thiocyanato- $\kappa^2 N:S$]

Hong Li* and Shi Guo Zhang

Binzhou Key Laboratory of Material Chemistry, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China

Correspondence e-mail: honglizhang1968@yahoo.cn

Received 16 August 2010; accepted 31 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.080; data-to-parameter ratio = 16.0.

In the title complex, $[Cu(NCS)(C_{12}H_8N_2)]_n$, the Cu^I ion is in a distorted tetrahedral CuN₃S coordination geometry. The thiocyanate ligand acts as bridging ligand, forming chains along [100]. A crystallographic mirror plane runs through the Cu^I ion, the thiocyanate ligand and the middle of the phenanthroline ligand.

Related literature

For related structures, see: Shi et al. (2006); Tadashi et al. (1990).

Experimental

Crystal data

$[Cu(NCS)(C_{12}H_8N_2)]$	
$M_r = 301.82$	
Orthorhombic, Pnma	
a = 7.9744 (15) Å	
b = 11.948 (2) Å	
c = 12.956 (2) Å	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.667, T_{\max} = 0.762$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.080$ S = 1.031421 reflections

V = 1234.4 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.92 \text{ mm}^{-1}$ T = 298 K $0.23 \times 0.15 \times 0.15$ mm

6226 measured reflections 1421 independent reflections 1146 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

89 narameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. ZR2009BL002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5123).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376-380.

Tadashi, T., Naofumi, W., Michio, N., Yoneichiro, M., Mitsuo, M., Shigeru, O. & Yoshihiko, S. (1990). Bull. Chem. Soc. Jpn, 63, 364-369.

supplementary materials

Acta Cryst. (2010). E66, m1216 [doi:10.1107/S1600536810035002]

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)copper(I)]- μ -thiocyanato- $\kappa^2 N:S$]

H. Li and S. G. Zhang

Comment

1,10-phenanthroline and thiocyanate anions play an important role in modern coordination chemistry and many complexes have been published with them as ligands (e.g. Shi *et al.*, 2006; Tadashi *et al.* (1990). We originally tried to prepare a new divalent Cu(II) complex with these two ligands, but the title monovalent Cu(I) complex was fortuitously obtained. Herein we report its crystal structure.

Fig. 1 shows part of the title complex. The Cu^{I} ion is coordinated by three N atoms and one S atom, and is in a distorted tetrahedral coordination environment. The thiocyanate ligand acts as bridging forming a 1-D chain with a Cu…Cu distance of 5.9960 (9) Å.

Experimental

A 5 ml H₂O solution of Cu(ClO₄)₂6H₂O (0.2000 g, 0.54 mmol) was added to a 10 ml methanol solution of 1,10-phenanthroline (0.1070 g, 0.54 mmol), and the mixture was stirred for a few minutes, then a 5 ml H₂O solution of NaNCS (0.0875 g, 1.08 mmol) was added dropwise and the mixture was stirred for a few minutes and then placed in a Teflon-lined autoclave and heated at 433K for 144 h at autogenous pressure. After the contents of the autoclave were cooled to room temperature, the red single crystals were obtained.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$.

Figures

Fig. 1. Part of the 1-D chain of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (i): x, -y + 3/2, z; (ii): x - 1/2, y, -z + 3/2; (iii): x + 1/2, y, -z + 3/2]

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)copper(I)]- μ -thiocyanato- $\kappa^2 N$:S]

F(000) = 608

 $\theta = 2.3 - 27.9^{\circ}$

 $\mu = 1.92 \text{ mm}^{-1}$ T = 298 K

 $0.23 \times 0.15 \times 0.15 \text{ mm}$

Block, red

 $D_{\rm x} = 1.624 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2278 reflections

Crystal data

 $[Cu(NCS)(C_{12}H_8N_2)]$ $M_r = 301.82$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 7.9744 (15) Å b = 11.948 (2) Å c = 12.956 (2) Å V = 1234.4 (4) Å³ Z = 4

Data collection

1421 independent reflections
1146 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
$h = -9 \rightarrow 10$
$k = -15 \rightarrow 15$
$l = -5 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0508P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
1421 reflections	$\Delta \rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3}$
89 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Duine and atom with 1 and in a duration in a dimensional dimension	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0039 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.13936 (17)	0.68993 (15)	1.13076 (12)	0.0406 (4)
C2	0.1011 (2)	0.63175 (18)	1.22243 (13)	0.0543 (5)
C3	0.0628 (3)	0.69444 (18)	1.31338 (13)	0.0712 (6)
H3	0.0372	0.6565	1.3740	0.085*
C4	0.1051 (2)	0.51479 (18)	1.21873 (16)	0.0669 (6)
H4	0.0792	0.4731	1.2772	0.080*
C5	0.1468 (2)	0.46262 (19)	1.12958 (17)	0.0648 (6)
Н5	0.1491	0.3849	1.1262	0.078*
C6	0.1862 (2)	0.52657 (16)	1.04275 (16)	0.0528 (5)
H6	0.2175	0.4895	0.9826	0.063*
C7	0.5834 (3)	0.7500	0.79202 (17)	0.0436 (5)
Cu1	0.23713 (4)	0.7500	0.92283 (2)	0.04865 (16)
N1	0.6286 (2)	0.7500	0.70801 (14)	0.0487 (5)
N2	0.18111 (17)	0.63783 (12)	1.04164 (11)	0.0412 (3)
S1	0.52660 (9)	0.7500	0.91372 (4)	0.0702 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0342 (8)	0.0577 (10)	0.0300 (8)	-0.0010 (7)	0.0005 (6)	0.0033 (7)
C2	0.0467 (10)	0.0768 (13)	0.0392 (9)	-0.0047 (9)	0.0023 (8)	0.0131 (9)
C3	0.0708 (12)	0.1093 (18)	0.0335 (9)	-0.0073 (11)	0.0146 (9)	0.0111 (9)
C4	0.0664 (14)	0.0748 (15)	0.0593 (13)	-0.0081 (10)	-0.0013 (10)	0.0283 (11)
C5	0.0638 (13)	0.0510(11)	0.0796 (16)	-0.0007 (10)	-0.0080 (12)	0.0169 (11)
C6	0.0548 (11)	0.0519 (11)	0.0517 (11)	0.0028 (9)	-0.0052 (9)	-0.0009 (9)
C7	0.0417 (12)	0.0567 (15)	0.0323 (12)	0.000	-0.0043 (10)	0.000
Cu1	0.0589 (3)	0.0631 (3)	0.0240 (2)	0.000	0.00043 (12)	0.000
N1	0.0563 (13)	0.0619 (13)	0.0278 (9)	0.000	0.0038 (9)	0.000
N2	0.0423 (7)	0.0469 (8)	0.0345 (7)	0.0000 (6)	-0.0012 (6)	0.0021 (6)
S1	0.0499 (4)	0.1360 (8)	0.0245 (3)	0.000	0.0024 (3)	0.000

Geometric parameters	(Å,	9)	
----------------------	-----	----	--

C1—N2	1.353 (2)	С5—Н5	0.9300
C1—C2	1.410 (2)	C6—N2	1.330 (2)
C1—C1 ⁱ	1.435 (4)	С6—Н6	0.9300
C2—C4	1.399 (3)	C7—N1	1.147 (3)

supplementary materials

C2—C3	1.429 (2)	C7—S1	1.640 (2)
C3—C3 ⁱ	1.328 (4)	Cu1—N1 ⁱⁱ	1.9033 (19)
С3—Н3	0.9300	Cu1—N2 ⁱ	2.0893 (14)
C4—C5	1.354 (3)	Cu1—N2	2.0893 (14)
C4—H4	0.9300	Cu1—S1	2.3113 (9)
C5—C6	1.396 (3)	N1—Cu1 ⁱⁱⁱ	1.9033 (19)
N2—C1—C2	123.04 (17)	N2-C6-C5	123.3 (2)
$N2-C1-C1^{i}$	117.39 (9)	N2—C6—H6	118.4
C2—C1—C1 ⁱ	119.55 (11)	С5—С6—Н6	118.4
C4—C2—C1	117.32 (19)	N1—C7—S1	177.7 (2)
C4—C2—C3	123.83 (19)	N1 ⁱⁱ —Cu1—N2 ⁱ	123.98 (6)
C1—C2—C3	118.84 (18)	N1 ⁱⁱ —Cu1—N2	123.98 (6)
C3 ⁱ —C3—C2	121.60 (11)	N2 ⁱ —Cu1—N2	79.80 (8)
C3 ⁱ —C3—H3	119.2	N1 ⁱⁱ —Cu1—S1	114.12 (6)
С2—С3—Н3	119.2	N2 ⁱ —Cu1—S1	104.55 (4)
C5—C4—C2	119.65 (19)	N2—Cu1—S1	104.55 (4)
С5—С4—Н4	120.2	C7—N1—Cu1 ⁱⁱⁱ	171.3 (2)
C2—C4—H4	120.2	C6—N2—C1	117.26 (16)
C4—C5—C6	119.4 (2)	C6—N2—Cu1	129.99 (13)
С4—С5—Н5	120.3	C1—N2—Cu1	112.71 (11)
С6—С5—Н5	120.3	C7—S1—Cu1	108.96 (9)
N2-C1-C2-C4	-0.9 (2)	C1 ⁱ —C1—N2—C6	177.93 (12)
C1 ⁱ —C1—C2—C4	-179.14 (12)	C2-C1-N2-Cu1	-178.16 (12)
N2-C1-C2-C3	178.35 (16)	C1 ⁱ —C1—N2—Cu1	0.08 (11)
C1 ⁱ —C1—C2—C3	0.1 (2)	N1 ⁱⁱ —Cu1—N2—C6	58.10 (18)
C4—C2—C3—C3 ⁱ	179.09 (13)	N2 ⁱ —Cu1—N2—C6	-177.60 (14)
C1—C2—C3—C3 ⁱ	-0.2 (2)	S1—Cu1—N2—C6	-75.07 (16)
C1—C2—C4—C5	0.9 (3)	N1 ⁱⁱ —Cu1—N2—C1	-124.40 (10)
C3—C2—C4—C5	-178.38 (19)	N2 ⁱ —Cu1—N2—C1	-0.09 (13)
C2—C4—C5—C6	0.4 (3)	S1—Cu1—N2—C1	102.44 (10)
C4—C5—C6—N2	-1.7 (3)	N1—C7—S1—Cu1	180.00 (2)
S1—C7—N1—Cu1 ⁱⁱⁱ	0.00 (2)	N1 ⁱⁱ —Cu1—S1—C7	0.0
C5—C6—N2—C1	1.7 (3)	N2 ⁱ —Cu1—S1—C7	-138.50 (4)
C5—C6—N2—Cu1	179.08 (13)	N2—Cu1—S1—C7	138.50 (4)
C2-C1-N2-C6	-0.3(2)		

Symmetry codes: (i) *x*, -*y*+3/2, *z*; (ii) *x*-1/2, *y*, -*z*+3/2; (iii) *x*+1/2, *y*, -*z*+3/2.

