Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline$\left.\left.\kappa^{2} N, N^{\prime}\right) \operatorname{copper}(\mathrm{I})\right]-\mu$-thiocyanato- $\left.\kappa^{2} N: S\right]$

Hong Li* and Shi Guo Zhang

Binzhou Key Laboratory of Material Chemistry, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China
Correspondence e-mail: honglizhang1968@yahoo.cn
Received 16 August 2010; accepted 31 August 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.028 ; w R$ factor $=0.080$; data-to-parameter ratio $=16.0$.

In the title complex, $\left[\mathrm{Cu}(\mathrm{NCS})\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, the Cu^{I} ion is in a distorted tetrahedral $\mathrm{CuN}_{3} \mathrm{~S}$ coordination geometry. The thiocyanate ligand acts as bridging ligand, forming chains along [100]. A crystallographic mirror plane runs through the Cu^{I} ion, the thiocyanate ligand and the middle of the phenanthroline ligand.

Related literature

For related structures, see: Shi et al. (2006); Tadashi et al. (1990).

Experimental

Crystal data
$\left[\mathrm{Cu}(\mathrm{NCS})\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=301.82$
Orthorhombic, Pnma
$a=7.9744$ (15) \AA
$b=11.948$ (2) \AA
$c=12.956$ (2) \AA

$$
\begin{aligned}
& V=1234.4(4) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.92 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& 0.23 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.667, T_{\text {max }}=0.762$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 89$ parameters
$w R\left(F^{2}\right)=0.080$
$S=1.03$
1421 reflections

6226 measured reflections 1421 independent reflections 1146 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. ZR2009BL002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5123).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. \& Cheng, P. (2006). Dalton Trans. pp. 376-380.
Tadashi, T., Naofumi, W., Michio, N., Yoneichiro, M., Mitsuo, M., Shigeru, O. \& Yoshihiko, S. (1990). Bull. Chem. Soc. Jpn, 63, 364-369.

supplementary materials

Acta Cryst. (2010). E66, m1216 [doi:10.1107/S1600536810035002]

catena-Poly[[(1,10-phenanthroline- $\left.\left.\kappa^{2} N, N^{\prime}\right) \operatorname{copper}(\mathrm{I})\right]-\mu$-thiocyanato- $\left.\kappa^{2} N: S\right]$

H. Li and S. G. Zhang

Comment

1,10-phenanthroline and thiocyanate anions play an important role in modern coordination chemistry and many complexes have been published with them as ligands (e.g. Shi et al., 2006; Tadashi et al. (1990). We originally tried to prepare a new divalent $\mathrm{Cu}(\mathrm{II})$ complex with these two ligands, but the title monovalent $\mathrm{Cu}(\mathrm{I})$ complex was fortuitously obtained. Herein we report its crystal structure.

Fig. 1 shows part of the title complex. The Cu^{I} ion is coordinated by three N atoms and one S atom, and is in a distorted tetrahedral coordination environment. The thiocyanate ligand acts as bridging forming a 1-D chain with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 5.9960 (9) \AA.

Experimental

A $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}(0.2000 \mathrm{~g}, 0.54 \mathrm{mmol})$ was added to a 10 ml methanol solution of 1,10-phenanthroline ($0.1070 \mathrm{~g}, 0.54 \mathrm{mmol}$), and the mixture was stirred for a few minutes, then a $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ solution of $\mathrm{NaNCS}(0.0875$ $\mathrm{g}, 1.08 \mathrm{mmol}$) was added dropwise and the mixture was stirred for a few minutes and then placed in a Teflon-lined autoclave and heated at 433 K for 144 h at autogenous pressure. After the contents of the autoclave were cooled to room temperature, the red single crystals were obtained.

Refinement

All H atoms were placed in calculated positions and refined as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Part of the 1-D chain of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (i): $x,-y+3 / 2$, z; (ii): $x-1 / 2, y,-z+3 / 2$; (iii): $x+1 / 2, y,-z+3 / 2]$

supplementary materials

catena-Poly[[(1,10-phenanthroline- $\left.\left.\kappa^{2} N, N^{\prime}\right) \operatorname{copper}(\mathrm{I})\right]-\mu$-thiocyanato- $\left.\kappa^{2} N: S\right]$

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=301.82$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=7.9744$ (15) \AA
$b=11.948$ (2) \AA
$c=12.956(2) \AA$
$V=1234.4(4) \AA^{3}$
$Z=4$
$F(000)=608$
$D_{\mathrm{x}}=1.624 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2278 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=1.92 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, red
$0.23 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.667, T_{\max }=0.762$
6226 measured reflections
1421 independent reflections
1146 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-9 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-5 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.080$
$S=1.03$
1421 reflections
89 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0508 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}^{*} / U_{\text {eq }}$
C1	$0.13936(17)$	$0.68993(15)$	$1.13076(12)$	$0.0406(4)$
C2	$0.1011(2)$	$0.63175(18)$	$1.22243(13)$	$0.0543(5)$
C3	$0.0628(3)$	$0.69444(18)$	$1.31338(13)$	$0.0712(6)$
H3	0.0372	0.6565	1.3740	0.085^{*}
C4	$0.1051(2)$	$0.51479(18)$	$1.21873(16)$	$0.0669(6)$
H4	0.0792	0.4731	1.2772	0.080^{*}
C5	$0.1468(2)$	$0.46262(19)$	$1.12958(17)$	$0.0648(6)$
H5	0.1491	0.3849	1.1262	0.078^{*}
C6	$0.1862(2)$	$0.52657(16)$	$1.04275(16)$	$0.0528(5)$
H6	0.2175	0.4895	0.9826	0.063^{*}
C7	$0.5834(3)$	0.7500	$0.79202(17)$	$0.0436(5)$
Cu1	$0.23713(4)$	0.7500	$0.92283(2)$	$0.04865(16)$
N1	$0.6286(2)$	0.7500	$0.70801(14)$	$0.0487(5)$
N2	$0.18111(17)$	$0.63783(12)$	$1.04164(11)$	$0.0412(3)$
S1	$0.52660(9)$	0.7500	$0.91372(4)$	$0.0702(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C 1	$0.0342(8)$	$0.0577(10)$	$0.0300(8)$	$-0.0010(7)$	$0.0005(6)$	$0.0033(7)$
C 2	$0.0467(10)$	$0.0768(13)$	$0.0392(9)$	$-0.0047(9)$	$0.0023(8)$	$0.0131(9)$
C 3	$0.0708(12)$	$0.1093(18)$	$0.0335(9)$	$-0.0073(11)$	$0.0146(9)$	$0.0111(9)$
C 4	$0.0664(14)$	$0.0748(15)$	$0.0593(13)$	$-0.0081(10)$	$-0.0013(10)$	$0.0283(11)$
C 5	$0.0638(13)$	$0.0510(11)$	$0.0796(16)$	$-0.0007(10)$	$-0.0080(12)$	$0.0169(11)$
C 6	$0.0548(11)$	$0.0519(11)$	$0.0517(11)$	$0.0028(9)$	$-0.0052(9)$	$-0.0009(9)$
C 7	$0.0417(12)$	$0.0567(15)$	$0.0323(12)$	0.000	$-0.0043(10)$	0.000
Cu 1	$0.0589(3)$	$0.0631(3)$	$0.0240(2)$	0.000	$0.00043(12)$	0.000
N 1	$0.0563(13)$	$0.0619(13)$	$0.0278(9)$	0.000	$0.0038(9)$	0.000
N 2	$0.0423(7)$	$0.0469(8)$	$0.0345(7)$	$0.0000(6)$	$-0.0012(6)$	$0.0021(6)$
S 1	$0.0499(4)$	$0.1360(8)$	$0.0245(3)$	0.000	$0.0024(3)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 2$	$1.353(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.410(2)$
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.435(4)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.399(3)$

$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{N} 2$	$1.330(2)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{N} 1$	$1.147(3)$

C2-C3	1.429 (2)	C7-S1	1.640 (2)
C3-C3 ${ }^{\text {i }}$	1.328 (4)	$\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	1.9033 (19)
C3-H3	0.9300	$\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {i }}$	2.0893 (14)
C4-C5	1.354 (3)	$\mathrm{Cu} 1-\mathrm{N} 2$	2.0893 (14)
C4-H4	0.9300	$\mathrm{Cu} 1-\mathrm{S} 1$	2.3113 (9)
C5-C6	1.396 (3)	$\mathrm{N} 1-\mathrm{Cu} 1{ }^{\text {iii }}$	1.9033 (19)
N2-C1-C2	123.04 (17)	N2-C6-C5	123.3 (2)
N2-C1-C1 ${ }^{\text {i }}$	117.39 (9)	N2-C6-H6	118.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\text {i }}$	119.55 (11)	C5-C6-H6	118.4
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 1$	117.32 (19)	N1-C7-S1	177.7 (2)
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	123.83 (19)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {i }}$	123.98 (6)
C1-C2-C3	118.84 (18)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2$	123.98 (6)
C3 ${ }^{\text {i }}$ - $3-\mathrm{C} 2$	121.60 (11)	$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 2$	79.80 (8)
$\mathrm{C} 3{ }^{\text {i }} \mathrm{C} 3-\mathrm{H} 3$	119.2	N1 ${ }^{\text {ii }}-\mathrm{Cu}-\mathrm{S} 1$	114.12 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.2	$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{S} 1$	104.55 (4)
C5-C4-C2	119.65 (19)	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{S} 1$	104.55 (4)
C5-C4-H4	120.2	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Cu} 1^{\text {iii }}$	171.3 (2)
C2-C4-H4	120.2	C6-N2-C1	117.26 (16)
C4-C5-C6	119.4 (2)	C6-N2-Cu1	129.99 (13)
C4-C5-H5	120.3	C1-N2-Cu1	112.71 (11)
C6-C5-H5	120.3	C7-S1-Cu1	108.96 (9)
N2- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	-0.9 (2)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 6$	177.93 (12)
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	-179.14 (12)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2-\mathrm{Cu} 1$	-178.16 (12)
N2-C1-C2-C3	178.35 (16)	$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{N} 2-\mathrm{Cu} 1$	0.08 (11)
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.1 (2)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	58.10 (18)
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	179.09 (13)	N2 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	-177.60 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	-0.2 (2)	$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	-75.07 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$	0.9 (3)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 1$	-124.40 (10)
C3-C2-C4-C5	-178.38 (19)	$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 1$	-0.09 (13)
C2-C4-C5-C6	0.4 (3)	$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 1$	102.44 (10)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	-1.7 (3)	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1-\mathrm{Cu} 1$	180.00 (2)
$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{Cu} 1^{\text {iii }}$	0.00 (2)	N1 ${ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 7$	0.0
C5-C6-N2-C1	1.7 (3)	$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 7$	-138.50 (4)
C5-C6-N2-Cu1	179.08 (13)	N2-Cu1-S1-C7	138.50 (4)
C2-C1-N2-C6	-0.3 (2)		

Symmetry codes: (i) $x,-y+3 / 2, z$; (ii) $x-1 / 2, y,-z+3 / 2$; (iii) $x+1 / 2, y,-z+3 / 2$.

Fig. 1

